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Microgravity Isolation System Design:
A Modern Control Analysis Framework

R. D. Hampton, l C. R. Knospe, 2 P. E. Allaire, 2

and C. M. Grodsinsky3

Abstract

Many acceleration-sensitive, microgravity science experiments will require active vibration

isolation from the manned orbiters on which they will be mounted. The isolation problem,

especially in the case of a tethered payload, is a complex three-dimensional one that is best suited

to modern-control design methods. These methods, although more powerful than their classical

counterparts, can nonetheless go only so far in meeting the design requirements for practical

systems. Once a tentative controller design is available, it must still be evaluated to determine

whether or not it is fully acceptable, and to compare it with other possible design candidates.

Realistically, such evaluation will be an inherent part of a necessarily iterative design process. In

this paper, an approach is presented for applying complex/a-analysis methods to a closed-loop

vibration isolation system (experiment plus controller). An analysis framework is presented for

evaluating nominal stability, nominal performance, robust stability, and robust performance of

active microgravity isolation systems, with emphasis on the effective use of/a-analysis methods.
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A new technique is also included for deriving guarantees on allowable umbilical and payload mass

variations, using complex ,u-analysis.

Introduction

The microgravity vibration isolation problem has received considerable attention in recent

years. A number of materials processes and fluid physics science experiments, planned for study

in a "weightless" space environment, have run into unacceptably high background acceleration

levels [1 ]. The low-frequency disturbances of most concern are a natural accompaniment of

space-flight, with its large, flexible, unloaded structures and random, human-induced excitations.

The combined need, with many experiments, for human interaction and for umbilicals connecting

orbiter with payload, has resulted in a very difficult, three-dimensional, active-isolation design

problem.

Recent work by the authors has produced an extended H 2 synthesis framework, along with

an associated general design philosophy, for developing a robust microgravity vibration-isolation

controller [2]. Other approaches (e.g., classical design or p synthesis) are, of course, also

theoretically capable of producing acceptable designs. But no approach can guarantee a

satisfactory controller, short of an iterative design-and-analysis procedure. Analysis of any

controller candidate is necessary to ensure that it, in fact, meets stability and performance

requirements for a reasonable degree of model uncertainty. ]./-analysis methods can provide

conservative guarantees of such acceptability [3]. ,t/ analysis also allows the engineer to assign

a relative merit to each competing controller design.

This paper seeks to provide an analysis framework and philosophy for evaluating a given

isolation controller candidate, with emphasis on the effective use of_u-analysis methods.

Particular stress is placed on evaluating the nominal stability, nominal performance, robust

stability, and robust performance of the associated closed-loop isolation system. The work builds

on the microgravity control synthesis framework proposed by the authors in [4].
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A Basic Isolation System

A generic microgravity vibration isolation system is depicted below in Fig. 1. A payload,

such as a microgravity science experiment, is acted upon by actuators (typically noncontacting,

e.g., Lorentz or electromagnetic) that are commanded by a control system. This control system

uses measurements, such as payload positions and accelerations, to develop the control signals,

typically currents or voltages. The objective of controller synthesis is to develop a stable, robust

controller that meets or exceeds the performance requirements. A framework for developing such

a controller, by extended H 2 synthesis, has been presented in a previous paper [4]. For the

purposes of the present work, it is assumed that a tentative controller has been synthesized and is

in need of evaluation.

Fig. 2. shows a transfer-function block diagram of the closed-loop system in state-space

form. This is the basic model used for closed-loop system analysis. The plant {A,B,C,D} (i.e.,

payload plus umbilical plus actuator) is subject to direct and indirect disturbances; both kinds are

included in input disturbance vectorfs. The direct disturbances are those which act directly upon

the payload; for example, these could be caused by air currents, astronaut contact, the flow of

fluids for lubrication or cooling, or rotating machinery mounted on the experiment platform. The

indirect disturbances act upon the payload through the umbilical. Due to the umbilical stiffness,

any motion of the space platform wall relative to the experiment will cause such a disturbance.

Some of the plant states _x"(not shown) are inaccessible; a subset,E represents the ideal

measurements, uncontaminated by sensor noise. Measurement vector z represents the actual

measurements, which are contaminated by output sensor-noise vector f_,,. The synthesized

controller, to be evaluated, has state-space form {AF/B,BF/B, CF/B,DF/B}. E s and E. are simply

selection matrices, and the control vector is u_.

Controller Evaluation

Once a microgravity vibration isolation controller has been synthesized, it must be

evaluated for acceptability and relative merit. One major design consideration is simplicity; the
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controller's state-spaceform should have no more states than necessary. For an analog

implementation, controller complexity translates directly into hardware complexity; for a digital

controller, the cost is largely in terms of computational power and speed. A controller which is

robust in stability and performance but which is too complicated for employment is of no use.

Modem control methods, especially with the augmentation accompanying frequency weighting

and disturbance accommodation, can result in controllers that have an unnecessarily large number

of states. The controller dimensionality can usually be reduced substantially by employing modal

reduction and/or the balance-and-truncate technique ("Moore's method;" [5], 1981). And even if

controller reduction is not deemed necessary, it is advisable for the sake of design simplicity.

Another important consideration is controller stability. Although unstable controllers are

used on occasion (provided the closed-loop system is stable) and need not be rejected out-of-

hand, they cannot easily be bench-tested. An ideal controller designed by extended H:- or ,u

synthesis is guaranteed to stabilize the nominal plant; but it is not guaranteed to be open-loop

stable, since some plants can only be stabilized by unstable controllers. Application of reduction

techniques can also lead to controller destabilization. It is best to conduct an eigenvalue check of

any controller candidate's "A-matrix" (Le., its dynamic matrix) to ensure controller stability.

Once the controller model has been checked for simplicity and stability, it is ready for

attachment to the model of the plant. There are four crucial checks that must now be made of the

closed loop system; viz., nominal stability, nominal performance, robust stability, and robust

performance [3]. The nominal analysis model (Fig. 2) is the conceptual starting point for

conducting these checks, each of which is treated individually below.

Nominal Stability

An unstable closed-loop system cannot, of course, provide the isolation desired. Stability

is the most basic system requirement for any microgravity vibration isolation system. The

extended H2-synthesis method, when used for controller design, provides an inherent guarantee of

stability for the nominal plant with full-state feedback. However, H 2 synthesis occasionally
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producesan unstable closed-loop system due to numerical anomalies. So closed-loop system

eigenvalues should still be checked. The same is true with a controller designed by/a synthesis.

The well-known "separation principle" guarantees that for a perfectly known plant, a

stable asymptotic (Le., Luenberger) observer will not destabilize the system. Thus, with the full-

order observer (i.e., observing all states and pseudostates), nominal closed-loop stability is

assured. However, models of dynamic systems are never perfect, so nominal stability is no

guarantee of actual isolation-system stability; and the use of an umbilical for the present problem

makes precise modeling especially difficult. Still, a check of nominal stability certainly provides a

reasonable starting point.

If the order of the feedback controller is reduced, the guarantee of nominal closed-loop

stability provided by extended H: synthesis is lost. But simple checks of the closed-loop-system

eigenvalues (Le., the eigenvalues of the closed-loop system A-matrix) can readily verify (or

contraindicate) stability, regardless of the design methodology used. For the system shown in Fig.

2, the closed-loop-system A-matrix (from input _uto output z__,for simplicity, and without loss of

generality) is

A + B(I- DF,sD)-' DpmC B(I- DF,,D)-' C_.,,-' D (1)
ACL= BF,s(I_DDF,8)-, C AF,a+Bpm(I-DDF,8) CF,8

where [ C---_B ID---_m]AFIB BFtB represents the transfer function matrix in the feedback path from z_ to _u.

Nominal Performance

A potential controller design for a microgravity vibration-isolation system must do more

than provide stability; it must also give acceptable system performance when its model is attached

to the nominal plant model. Orbiter motions and sensor noise must both be rejected to specified

levels. And the necessary control signals must be small enough to prevent actuator- or amplifier

saturation. Using the various transfer functions represented by the nominal analysis model, the

designer can verify that the nominal controlled plant meets such design specifications. Since
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system uncertainties (e.g., umbilical- or actuator model inaccuracies) will degrade actual closed-

loop system performance, it is generally desirable to exceed the performance specifications during

controller design, so that as large a set of off-nominal plants as possible (or desirable) will still

meet the design specifications. Robust performance will be checked at a later stage; but it should

be kept in mind here that a nominal performance which is only marginal will probably be

unacceptable when model inaccuracies are taken into account. The goal, of course, is for the

isolation system to meet the performance requirements in hardware.

The uncontrolled plant for the microgravity vibration-isolation problem has a strictly

proper transfer-function matrix (Le., D =- O, the zero matrix). Accordingly, the closed-loop

transfer functions from process-noise inputsf_s to measurements z are

A + B Dp,sC BCF, n

H cz = BF,sC AI_'tB
z_.y__.,

E.,C 0

1

0

O

And from sensor noise inputsf_n to measurements z__,the closed-loop transfer functions are

(2a)

A + B DmnC BCsm

I-1__.c_,__= BmsC AF, B

C 0
BDms ]
BF'B (2b)

1

The closed-loop system must achieve acceptable isolation, but it must do so without unacceptable

sensitivity to sensor noise. These two tasks involve an inherent trade-off. High loop gains are

necessary to reject input disturbances at a given frequency. These correspond to small

transmissibility gains, Le., to small magnitudes of the complementary sensitivity-function matrix T.

On the other hand, low loop gains are necessary to reject sensor noise. These correspond to small

magnitudes of the sensitivity-functionmatrix S. Since the sum of Tand S is the identity matrix I

[6], the designer cannot achieve arbitrarily low sensitivity to noise in the same frequency band



where good disturbance rejection is to be accomplished. This unavoidable trade-offcan be

measured by use of the above two transfer-function matrices.

The system must also employ a control signal that does not become excessive for realistic

disturbance levels. If amplifiers or actuators are allowed to saturate, the resulting nonlinearities

will greatly complicate both the synthesis and the analysis problems. The following transfer-

function matrix provides a measure of this aspect of nominal system performance.

A + B Dp,BC BCp,e

H cL = BpmC AF,B
__._

DF/BC CF/e

_?_o

0

(2c)

Simple Form for Nominal H 2 Controller

For a controller designed by extended H 2 synthesis [4], the controller transfer-function

matrix [C----_-8]D---_,B]AP/B BF,8 has a particularly convenient form. First, define n:= dim(x), the number of

states in the plant model; and let the disturbance-accommodation pseudostate vector be

__:= [__r, _r ]r, with _, and -_2 corresponding to input- and output disturbances, respectively.

Assume the use of an asymptotic observer for state reconstruction. When all states and

pseudostates are reconstructed in the observer, the full observer-synthesis model is used (Fig. 3a).

In this case,

[ [ ][[_]_F/s ]=[tA'['IB --T_.IK-IL 1C

where K is the optimal feedback gain matrix, and L is the observer gain matrix.

superscripts "1" reflect the appropriate augmentation.

The pre-

(3)
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The frequency-weighting pseudostates need not be reconstructed in the observer, since

they can be produced from the state observations and control signals, by simple filtering. One can

then (more typically) use an observer-synthesis model of reduced order (Fig. 3b), in which case

(4a)

ILol2 r Lx 1 with L x consisting of the first n rows of eL. (4b,c)
where L," = , for 2L := LL* j'

The pre-superscript "2" indicates that the frequency-weighting pseudostates were omitted in the

augmented plant model used for determining the observer gains [4]. Eqs. (3) and (4) can be used

with Eqs. (1) and (2) to evaluate system nominal stability and -performance with relative ease.

Robust Stability

To be practical, a vibration-isolation system must be stable not only for the nominal plant

but for a range of off-nominal plants as well. For the microgravity isolation problem, the payload

mass will in most cases be known quite accurately. But fluid motion (e.g., for cooling or in

studies of liquid bridges, surface-tension driven convection, or encapsulated crystal growth) can

cause actual or apparent mass/inertia variations. And umbilical and actuator nonlinearities will

typically cause the respective models to be quite inaccurate. A controller design must take into

account such effects, so that system stability can be ensured for at least the anticipated range of

model uncertainties. A closed-loop-system of this character is said to have "robust stability."

In classical control theory, the gain margin (G1VO and phase margin 0aM) of a single-input-

single-output (SISO) system are the familiar measures of stability robustness. They measure,

respectively, the amount of gain or phase that can be inserted into the feedback loop of a transfer-

function block diagram without leading to system instability. (This may be conceptualized as the
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turning of a "gain knob" or "phase knob," respectively, until instability is encountered.)

Accordingly, they provide the analyst with separate measures of allowable uncertainty in loop gain

or phase.

If the loop gain and phase are allowed to vary simultaneously, this uncertainty can be

represented correspondingly by a complex gain e "+jp = re jp. Let A(s) be a complex "ball"

representing all possible complex gains of some magnitude r, and let M(s) be the transfer function

of the (stable closed-loop) system "seen" by these gains. ('Refer to Fig. 4.) The magnitude of the

scalar product A(jca)M(]ca) must be less than one to guarantee that the uncertainty does not

destabilize the system. Consequently, the magnitude of the inverse of M(/ca) (i.e., IM-' (jca)])

provides a measure of the magnitude of complex uncertainty allowable in the loop, as a function

of frequency ca. The minimum of the plot otis'c/ca) I provides a guarantee of allowable

uncertainty size for all frequencies.

For multiple-input-multiple-output (MIMO) systems, a robustness analysis method very

similar to the A-complex-gain method described above can be used. In this analysis, M(s) is a

transfer-function matrix and A(s) is a transfer-function matrix of complex gains representing

uncertainty in the system. The maximum singular value of the matrix product AQca)M(jca) must

be less than one to ensure a stable system. Consequently, the inverse of the maximum singular

value of MOo)) (i.e., Tr--' [M(jca)]) provides a measure (induced 2-norm) of the complex

uncertainty allowable in the loop as a function of frequency ax The minimum of the plot of

B--' [M(jc0)] provides a guarantee of the allowable uncertainty size for all co.

One problem with the singular-value method is that it may model uncertainties in the

system which are not physically meaningful, since it allows any input (to the A-block) to be

coupled to any A-block output. The structured singular value/z provides an alternative measure

of stability robustness which permits the analyst to remove unrealistic couplings. This is

accomplished by prescribing a structure for the complex gain matrix A(s). To measure system

stability robustness using/z analysis, the engineer first models system uncertainties as a complex

gain matrix A(s) with a block diagonal structure, appropriately located in a flow path of a transfer-

9
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function-matrix block diagram. This structured-uncertainty matrix is composed of smaller

complex uncertainty blocks (A,-blocks) along its main diagonal. To permit/a analysis it is required

simply that the resulting system, with A-block inserted, be capable of arrangement as shown in

Fig. 4. Once this has been done, the structured singular value/a of M(jco) can be found. (In

actuality,/a can be determined exactly only if the number of A_-blocks is three or fewer; for a

larger number of blocks, upper and lower bounds must be employed [3].)/a-l[MQco)] provides a

measure of the largest magnitude (induced 2-norm) that the di-blocks can all possess

simultaneously without any combination of the A,.-blocks leading to system instability. The

structured singular value/a[M(jco)], used with a structured uncertainty, is analogous to the

maximum singular value _r[M(jco)] which was used in the unstructured case.

Example: Robust Stability Analysis for Actuator Uncertainties

To illustrate, consider a robust stability analysis for a microgravity isolation system with

noncontacting magnetic actuators. Two types of actuators are under consideration/development:

magnetic beatings and Lorentz actuators [7]. Each type is likely to experience gain variation as a

function of payload position in the rattlespace. Position-dependent cross-coupling is likely as

well, between each actuator's nominal line of force and the associated orthogonal axes. Finally,

anomalous phase lags can be expected due to unmodeled physical phenomena (e.g., eddy currents

and hysteresis). Such actuator uncertainties can be modeled by use of a multiplicative input A-

block, inserted into the nominal analysis model (closed-loop portion) as shown in Fig. 5. The A-

block has a direct physical correspondence to phase-plus-gain uncertainties in the controller

output(s) or actuator(s). The uncertainty can be either unstructured or structured. Assuming that

each actuator has only one line of action. If a control input to one actuator affects only the output

of that actuator, a structured uncertainty model will give more realistic (i.e., less conservative)

results. If there is appreciable cross-coupling from one actuator input to the output of another

actuator (e.g., via the cocking of the payload) then the unstructured form is more appropriate.

10
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Consider theunstructured casefirst. In this case,A is a full complex matrix, with

uncertainties between all of its inputs and outputs. Re-express the system in the form shown in

Fig. 6, where M is the transfer-function matrix "seen" by A. For this example (i.e., with a

multiplicative input A-block),

M = (5)

IV is a scalar weighting function, used to normalize the A-block so that its maximum singular

value is less than one. In order to have a stable system, it is necessary that the product

A(s) IV(s)M(s) have a maximum singular value o" less than one. Accordingly, _- s [ IVM(jog)]

gives the maximum allowable "size" of A as a function of o9. Specifically, if the maximum

singular value of A is less than _- i[IVM(jo9)] there is no uncertainty represented by A that can

destabilize a stable system. (E.g., for a SISO system one could choose IV to reflect the minimum

acceptable phase- or gain variation from controller output to plant input, as a function of

frequency [2]. With this normalization of A, if the plot of 0"- '[IVM(jo9)] is below unity for all o9

the nominal system is guaranteed to have the required stability margin.)

Next consider a structured-uncertainty case, where A has a block-diagonal form. For a

system with two control inputs there would be two zli-blocks: ,4 = zl2 .

means that uncertainties are considered to exist only "in-channel" between input(s) and output(s)

of A. Again, re-express the system in the form shown in Fig. 6; M is defined as before. Win this

case is a diagonal weighting matrix, with one scalar weighting function per channel of input to A.

This weighting matrix is used to normalize each Ai-block so that its maximum singular value

B-(zl ,) is less than one. In order to have a stable system it is necessary that the product

A(s)IV(s)M(s) have maximum singular value B- less than one, as before. Accordingly,

br- _[IVM(jm)] gives the maximum allowable "size" of the uncertainty blocks A i, as a function of

o_. Specifically, if the maximum singular value of each Ai-block is less than l.r- t [WM(jm)] there

is no uncertainty represented by A that can destabilize a stable system. (E.g., for a system with

two control inputs one could choose IV to reflect the minimum acceptable in-channel phase- or

11



gain variation from each controller output to the associated plant input, as a function of frequency

[2]. With this normalization of A, if the plot of_-, [WM(jco)] lies below unity for all co the

nominal system is guaranteed to have the required stability margins.) Note that since the

uncertainty block(s) A i can represent complex gains in any direction in the gain plane, even those

directions not corresponding to realistic variations, p-analysis results are conservative in nature.

In the case of an unstructured A-block the plot of _'-_ (M) can be used to calculate MIMO

gain margin (GM) and -phase margin (PM) ([3], pp. 47-56) at the plant input. In the structured-

uncertainty case either _-_ (M) or, less conservatively, g-1(A4) can be used for this purpose. See

the Appendix for details.

Other Stability-Robustness Checks for the Microgravity Isolation Problem

As shown above, multiplicative-input A-blocks are useful in finding guarantees of

allowable variation for magnetic- or Lorentz actuators. A-blocks can be placed elsewhere in the

system block diagram to provide other useful stability-robustness guarantees, in similar fashion.

The controller inputs for the microgravity isolation problem typically come from relative-position

sensors and accelerometers. Each sensor will filter its input in a manner only approximated by its

transfer-function model. The analyst can determine guarantees of allowable sensor variations with

the use of multiplicative-output A-blocks (Fig. 7a). As before, a MIMO GM and PM can be

derived. In addition to the above variations, there will be higher system modes for which the

payload- and umbilical models do not account. An Hadditive uncertainty" A-block can be placed

in a forward direction around the plant (Fig. 7b) to find an measure of the modal uncertainties

allowable. One can also use a feedback uncertainty-block (Fig. 7c) to model uncertainties in

payload mass, or in umbilical stiffness or damping, as will be shown later.

Robust Performance

It is necessary also that the closed-loop system performance not degrade unacceptably if

the isolation system model is inaccurate or if the system changes over time. For example,

12



umbilical model uncertainties must not reduce microgravity isolation below acceptable levels. The

level of performance robustness can be measured by using/_ analysis, in a manner similar to that

employed for stability-robustness analysis. By posing the closed-loop frequency-domain

specifications in the form of a A-block with an appropriately selected weighting matrix (dpfand

Wpf, respectively), and at the same time using stability A-blocks (dst) as described previously, the

designer can determine how much complex uncertainty is allowable at various places in the

closed-loop system, without exceeding the performance specifications or causing system

instability ([3], pp. 68-73). Typically the non-zero elements of Wpfare the reciprocals of the

appropriate closed-loop transfer functions. Again, the results are conservative.

Figs. 8a and b give examples of robust-performance analysis models which are useful for

the microgravity isolation problem. The structured singular value plot for the multiplicative input

(or -output) case can be used to determine a MIMO gain variation (GV) or -phase variation ('PV).

These are conservative measures of the gain- or phase variation allowable in each channel

(entirely analogous to MIMO PM and GM) without violating performance specifications or losing

stability guarantees. (See the Appendix for details.) These measures are found for a realistic 1-D

microgravity isolation problem in reference [2].

Real Parametric Uncertainty Guarantees

The multiplicative-input-, multiplicative-output-, and additive-uncertainty blocks used in

the above checks are inadequate by themselves to verify system stability- or performance

robustness for the microgravity vibration isolation problem. In particular, these checks cannot

verify system robustness to uncertainties in umbilical properties or in payload mass/inertia. These

kinds of uncertainties are referred to as "real parametric uncertainties." Robustness in the face of

real parametric uncertainties is of particular concern for the microgravity vibration isolation

problem, since umbilicals are quite difficult to model accurately. Some possible approaches to

this problem are surveyed below, along with a new approach using complex feedback uncertainty.

13



Real-/.,

One possible approach to determining real-parametric-uncertainty guarantees is the use of

real-_ (/_R)- To use/_Rthe problem is first expressed in the form of Fig. 6, where the diagonal

elements d i of the A-block are restricted to being real and uncorrelated. (The initial procedure for

producing this form is generally somewhat involved, but straightforward. See [8].) The

interpretation of_u R is analogous to that of complex-g, with the exception that now only real gains

are considered. Unfortunately, exact calculations ofbt R are very computationally intensive;

accordingly, its practical use is severely limited, to about eight or nine parameters [9]. For some

problems, though, this is an acceptable limitation. If the 3-D microgravity problem has umbilicals

that can be modeled jointly by one 3-D spring-and-damper system, and a payload that is isolated

by one 3-D magnetic actuator, the real-/.t problem can have one mass, three uncorrelated inertias,

three uncorrelated stiffnesses, and three uncorrelated dampings. If the uncertainties in damping

can be considered of negligible effect (as indicated by certain studies of the 1-D problem [2]), then

real-bt could be a practical analysis option. Note, however, that real-/_ cannot be used for

performance-robustness analysis, since only real uncertainties can be represented in the

corresponding A-block.

Mixed-,u

A second approach to obtaining real-parametric-uncertainty guarantees is to treat the

problem using mixed-/t (/t,_), where both real and complex uncertainties (including repeated

blocks) are allowed in the A-block substructure [10]. In general, bt,_ is more conservative than gR,

but the inclusion of complex gains permits performance-robustness checks while still considering

real parametric uncertainties. Again, the starting point is shown in Fig. 6. As with real-bt, exact

mixed-bt calculation appears to be fundamentally limited to very restricted cases. However, there

have been promising advances in finding useful upper and lower bounds on/.t_for many

engineering problems of practical size (with as many as 100 real parameters) [ 10].

14
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Complex-la

A third approach would be to set up the problem as with real-/a, but to compute

complex-/a (/a) instead. This method can be used for both stability- and performance-robustness

cheeks. However,/a is more conservative than/a_ or/a s, and there is still no exact computational

method for more than three A_-blocks. Again, one must generally settle for upper and lower

bounds.

Complex-lz with Feedback Uncertainty

Alternatively, complex-/z can be used in a fundamentally different way for conducting real-

parametric-uncertainty analysis. The previous three methods all require the use of separate

di-blocks for each parameter under consideration, so that the respective parametric uncertainties

are considered in mutual isolation. For the I-D microgravity isolation problem, this means that

dik, &:, and _rn must each have its own Ai-block in the overall uncertainty-block structure.

However, for this problem the uncontrolled plant has a characteristic equation (viz., ms 2 +cs + k)

that permits exploitation for real-parametric-uncertainty analysis. If the plant is rearranged

appropriately for the insertion of a complex feedback A-block, it is possible to use the particular

structure of the associated complex-/z to determine combinations of payload mass, umbilical

stiffness, and umbilical damping for which robust stability can be assured. (As with the preceding

methods, the results are conservative.)

Consider the block diagram shown in Fig. 9a, where _n, 8c, and 67¢ represent real

variations in payload mass, umbilical damping, and umbilical stiffness, respectively. This block

diagram reduces to the equivalent block diagram shown in Fig. 9b. If a complex A-block, "AF/_,"
1

is placed in a negative feedback path around (i.e., in place of the feedback transfer
ms 2 + cs + k

function in Fig. 9a), then real parametric uncertainty bounds on k, c, and m can be obtained from

the structured singular value plot of the system "seen" by AFza. The method is as follows, for a

one-dimensional (l-D) isolation problem.
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First, arrangethe closed-loopsystem such that it contains a transfer function block having

the structure 1 For a 1-D microgravity isolation system such a block diagram is
ms 2 + cs + k "

shown in Fig. 10. To evaluate the stability robustness ofthis system, one can look at a rearranged

(and abbreviated) block diagram, shown in Fig. 1 1, where a feedback uncertainty block AF/a has

been inserted into the analysis model. This feedback stability robustness model can be reduced

readily to the form of Fig. 4, with the plant "seen" by ztF/adesignated Mv/a. For a given value of

co (say, co1) AF/a(COl) can be conceptualized as a ball in the complex gain plane, of radius ra (co_),

with radial unit direction vector (variable) o_ . The value rk(co _) = ,U- 1[ Mv/a (Jo9) ] gives the

maximum allowable size (2-norm) of complex uncertainty AFro(co j). In particular, if ra(og_) is

smaller than rk(co_) there exists no complex unit direction vector _ at which an uncertainty (gain)

represented in Av/_(co 1) will drive a stable system unstable. However, a AF/_(co 1) of size

ra (ca,) = rk (col)will drive a system pole onto the jar-axis for some complex unit direction o_ = _.

The result will be system instability, for the complex uncertainty rt (o91 ) ,_,,. (This complex

uncertainty might not, of course, actually correspond to a physically possible variation.

Accordingly, the term "allowable" may be true only in a conservative sense.)

Note that the above discussion is for a particular (arbitrary) frequency, ogj. When the

plotted magnitude Of AF/a(W) remains below the curve rk(co) for aH values of co, this means that

there is no complex uncertainty contained in the uncertainty ball that can drive the system unstable

at any frequency 09.

Let Ak represent a complex ball of potential variations in stiffness k. Then the plot rk(ca)

displays the "allowable" (in the sense just described) size ofzlk, as a function of co, given no

uncertainty in c or m. In other words, at any frequency co, re(co) indicates how large zlk can be

without placing a system pole on the jar-axis at s =jog. (Since only real variations in stiffness are

physically possible, the plot of re(co) provides a conservative guarantee of permissible stiffness

variations as a function of frequency co. In this sense, it provides guarantees but not limits on
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permissiblestiffnessvariations.)

be obtained:

If one defines ro Ac, r m, and Am analogously, the following can

re(co)= .u-_ (M_-,sJj,_)
(6a)

(6b)

(6c)

r (co) = ( ) = co

rc( ) _ r, (co)
rm(co) =lu-' ( s_Mv/a [_,,, ) = ---_--_ co_

The minimum of each curve (call these minima ,ok, p_, and Pro, respectively) tightly bounds the

amount of complex variation "allowable" (again, in the conservative sense described above) in zik,

Ac, and Am, respectively, without any other feedback variations. If, for example, the size of zik

equals the minimum pk, instability will occur at some frequency cokfor the complex variation Ak of

that magnitude, in some complex direction (call the unit direction vector o_, ). Analogous

situations exist in the cases of Ac and Am. ,Ok, Po and Pm thus provide the designer with

conservative guarantees of "allowable" real parametric plant uncertainties 6k, 8c, and _n, taken

one at a time.

It is possible also to use the structured singular value information to obtain guarantees on

combinations of real parametric uncertainties. Let Cbr be defined as an "acceptable region" in the

real parameter space made up of points with coordinates (67_, &:, tSrn). The origin (0,0,0)

corresponds to a system with nominal plant parameters k = k,_, c = Co,,, and m = m,o m . (Refer

to Fig. 12a.) Let/-'r be the boundary between (1, r and the "unacceptable region," g_. Used in this

way, "acceptable" and "unacceptable" refer to system behavior, in terms of stability (for the

present consideration) or performance. For a given frequency co, there may be some combinations

(,_k, tSc, tSm) for which the control results in an acceptable (e.g., stable) behavior; such points

would be in Cb r . Other values (_k, tSc, d;m) which yield an unacceptable behavior at that

frequency would be in _. The boundary _ is found, in theory, by varying s fromjO tojoo, and

plotting each point (tS/q &:, &n) that leads to a closed-loop system pole on the jar-axis. Only

purely imaginary values ofs are used.
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The designerwould like to bound t_c, 8c, and _m such that he remains in Cb r . One

possible approach would be to use a "brute-force" (i.e., point-by-point) method. Such an

approach, while having the advantage of remaining entirely inside a real parameter space, can

only make guarantees about the specific sample points considered. _t analysis, in constrast,

considers all values in a region of a complex gain plane, so that the A-block is a "ball" that leads

to conservative guarantees for complex uncertainties less than some "size." This information,

although conservative, is still of great value; and since it is much easier to obtain, it has been used

in this study. These complex uncertainties can be used to obtain guarantees on combinations of

real parametric uncertainties, as follows.

Consider Fig. 12b. The region .(2 (o91) consists of all points in complex gain space

corresponding to values of uncertainty gain _g (i.e., of the structured singular value of AF/B) which

place a system pole on thejco-axis at frequency co+. (_g is underlined to indicate that it is a vector

quantity with real and imaginary components.) The "acceptable region" (2: (o91) is a ball in the

/.t [ Mp/B (J09s)], such that it just touches thegain space, centered at g=0, with radius rl,(co +) = -_

nearest point of.(2. A separate figure would exist, theoretically, for each value of co.

An uncertainty block dFm whose magnitude (i. e., radius in the gain-plane) is less than

rt,(09t) is guaranteed not to represent any complex gains which could place a pole on the jar-axis at

09t- The maximum allowable size ofdF_ (i.e., ofrk(09)) varies with frequency; define ,oj, as the

size of the largest uncertainty ball AF/B (or alternatively, Ak) that will not lead to instability at any

frequency. Let 09e be the limiting frequency. Pc and p,, (with coc and tom, respectively) provide

analogous conceptual pictures. Referring to Fig. 12b again, let _(091) represent the vector of AFro

with complex gain g = gk • componentiated in terms of its real and imaginary parts, gk(co+) is the

limiting value of g(09t) at frequency 09t- Let &__and __ be unit vectors in the real and imaginary

g-plane directions, respectively; let __k(09_) be the unit vector in the direction ofr__,(09_); and let
m

fit(09t) and B2(091) be the scalar components of _k(col)' such that

r_k(09,)=rk(09,)[13, C09,)&_&_c+f12(09,)'i,], rk (09,) = r_ (09,)_ (09,) , (7a, b)

and fit (09+) +]3_2 (co,) = 1 (7c)
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Analogousvectors and equationsexist for eachfrequency co.

If, for all ca<l, (_Y_-ca_cn) 2 </5_ (ca)r_2(co) and (ca_)2 </_2(ca)r_(ca) (8a,b)

where _, 8c, and _,n are real variations in k, c, and m from the nominal, then one can be assured

that no instability will occur for those values of ca. Since Pk is the rni_n[rk (ca)], one can replace

r_(ca) with p_ in (8a, b) and the assertion will still hold. Finally, since the limiting case of ill and ,62

(i.e., corresponding to p_) is at a point oftangency to .0 (a)_), any other values ¥1 and ?'2 may be

substituted for/8 ! and ,62, provided that _ + 7_2 < 1, without exceeding the boundaries of/2 (ca_).

Then the following assertion will hold (Assertion # 1):

2 2m forail (m- ca a-)2< rf /9: and (ca )2 < n/9,,

where _ + r_2 < 1,

then no instability will occur for those values of ca.

(9a, b)

(9c)

Defining ,63(o9) and ,6,(o9) in an analogous way to ,6t(ca) and ,62(ca), where seM_/_ now replaces

M in Fig. 4 (refer also to Eq. 6c), one can also arrive at the following:

If, forMica>t, _m _-- </5_(ca)p L and <_(ca)/9_,

then no instability will occur for those values of ca.

(lOa,b)

Finally, one can replace ,6_(ca) and ,6,(ca) with variables ?'3 and ?',, as before, provided _ + _ < 1.

This results in the foliovcing, Assertion # 2:

(3)' 2 2 2 2

If, for all ca > 1, _rn < ?'_/9, and < ?',p,,,,

where _ + _ < 1, then no instability will occur for those values of ca.

(Ila,b)

(1 lc)

From Assertions #1 and #2 the following condition can be obtained:
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Given any 7"1,7'z,YJ, and 7"_satisfying_2 + ?'] -< 1 and _ + Z,2 -< 1, and with p, Pc, and

Pm as previously defined, the following stability condition holds:

lakl<

and _n_ <p,,

t"tand [t_ <rain _Pk

t r,p.,J

, ==>system stability (Assertion #3)

By using Assertion #3, one can obtain guarantees of real variations in umbilical stiffness, umbilical

damping, and payload mass that can occur simultaneously without violating stability

specifications. Upon obtaining Pk, Pc, and p,,,from the appropriate structured-singular-value plots,

the analyst chooses 7"2and 7"_based on the percent error expected in c. Next, he chooses an

expected percent error in m (such that I&nt < Pro)- Then 7"1and 7"_are found from the equations

7"_ + 7"_ = 1 and 7"_ + 7"ff= 1; and finally guarantees are determined on allowable 6/¢. This provides

the analyst with a guarantee on the allowable maximum magnitude of stiffness variation _, as a

function of the assumed maximum magnitudes of simultaneous variations in umbilical damping 8c

and payload mass _rn. For any combination of real parametric variations remaining within this

real parameter space, the analyst can guarantee that the system will be stable.

This analysis procedure depends on the ability to arrange the microgravity isolation-system

model and complex-feedback-uncertainty block(s) in the appropriate form. Application to the

I-D case is found in reference [2]. The method was found to give useful results for stability-

robustness analysis, but the performance-robustness results were excessively conservative. For

more complicated geometries the application will be more difficult, and may not always be
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possible. Nonetheless, the use of feedback uncertainty A-block(s) can provide the engineer with

at least a relative measure of closed-loop-system robustness to umbilical- and payload parametric

variations.

Concluding Remarks

Analysis is a vital part of controller design for a rnicrogravity vibration-isolation problem.

Due to the many competing requirements for a rnicrogravity isolation system, the design of an

effective controller involves a studied, iterative process of synthesis and analysis. Each

synthesized controller must be subjected to a series of analytical checks, to verify that it will

perform satisfactorily under even the most pessimistic combination of possible model inaccuracies.

Most of the types of uncertainty that are of concern with a microgravity isolation system

can be modeled by complex uncertainty-blocks, appropriately placed in the nominal system's

transfer-function block diagram. This includes uncertainties in amplifier, actuator, and sensor

models, as well as unmodeled higher modes of the system. The powerful methods of complex-/z

analysis permit the analyst to obtain guarantees on the amount of uncertainty of each type that can

be tolerated without compromising stability or violating performance constraints.

Guarantees on allowable variations in real system parameters (such as umbilical stiffness

and damping, and payload mass/inertia) may be found by similar, if more sophisticated,

techniques. These techniques generally require mutual isolation of selected parameter

uncertainties in the uncertainty-block structure. The analyst then obtains the desired guarantees

by using either real-, mixed-, or complex-,u methods, in increasing order of conservatism.

Alternatively, the form of the microgravity isolation problem permits an approach involving the

use of complex-/.t with a feedback uncertainty-block having a much simplified structure. The

particular relationships between the parametric uncertainties, which are represented intermingled

in the feedback uncertainty-block, have been exploited to determine allowable combinations of

real-parameter variations.
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Appendix

The familiar phase margin (PM) and gain margin (GM) can be generalized to apply to

multiplicative input (or output) uncertainties for MIMO systems. Dailey's discussion [3] is

adapted below. Let the ith control-input channel have a multiplicative phase rotation _, (i.e.,

1 + A; = _a0, and let the various phase rotations be independent of each other. The input MIMO

PM is defined as the largest real (unique) interval lnt = [-6, 0] such that for all simultaneous

independent phase rotations 0_ _lnt (i=1 ..... n) the system remains stable. The output MIMO

PM is defined similarly. An input MIMO GM is defined as a real (non-unique) interval lnt = [G o

Gu] such that for all simultaneous independent gain variations G_ satisfying 1 + G i _ Int (i = 1, ...,

n) the system remains stable. The output MIMO GM is similarly defined.
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(A- I a)

(A-Ib)

(A-Ic)

Let S 1 and 7"1be the sensitivity and complementary sensitivity transfer matrices,

respectively, at the plant input. Then, in terms of the complementary sensitivity function T_. a

guaranteed lower bound for the MIMO PM is given by

MIMO PM _ [-O,+ O]

where 0= 2sin--,(_-_)

for r_, = inf_-,[T_(ja))]
¢oeR

A valid MIMO GM is given by

MIMO OM = [I-r,,.I +r,, ] (A-2)

In terms of the sensitivity function S_,

MIMO PM _ [-O, +a]

o= 2sin-' (_ - )

(A-3a)

where (A-3b)

for r_. = inf" _-,[S,(jo))], (A-3c)
a_eR

and MIMO GM _[) / / .] (m-4)+r..." 1-r.n . "

If instead of W the structured singular value ,u is used in Eqs. (A-lc) and (A-3c) above, the

lower bounds on the stability margins will be improved. For the analogous output stability margin

guarantees, one merely substitutes the output sensitivity and complementary sensitivity transfer

matrices S 2 and T2, respectively, into the appropriate equations given above.

Appfication to cases where performance specifications are included as A-blocks can be

made readily using structured singular values. In these cases, however, the terms "MIMO phase

variation (PV)" and "MIMO gain variation (GV)" are more appropriate, for obvious reasons.
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Figure 1.--Vibration isolation system.
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Figure 3b.--Reduced observer synthesis model.
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Figure 4.mBasic uncertainty analysis model.
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Figure 5.--Robust stability analysis model: multiplicative
input uncertainty.

MI
Figure 6.--Weighted /c-analysis model.
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Figure 7a.--Robust stability analysis model: multiplicative output
uncertainty.

+i

CF/B DFIB

Figure 7b.--Robust stability analysis model: additive
plant uncertainty.
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Figure 7c.--Robust stability analysis model: feedback
uncertainty.
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Figure 8a.--Robust performance analysis model: multiplicative input
uncertainty.
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Figure 8b.--Robust performance analysis model: feedback uncertainty with input disturbance model.

z

f

÷ /
) 1

rns2+cs+ k >

_rr/s 2+ _cs+ _k

Figure 9a.--Feedback variation block diagram.
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Figure 11 .--Block diagram for feedback stability robustness analysis.
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Figure 12a.--Real parametric uncertainty acceptable region.
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